Acta Crystallographica Section E
Structure Reports
Online
ISSN 1600-5368

## Rajnikant, ${ }^{\text {a }}$ Dinesh, ${ }^{\text {a }}$

M. B. Deshmukh ${ }^{\text {b }}$ and

Kamni ${ }^{\mathbf{a}}$
${ }^{\text {a }}$ Condensed Matter Physics Group, Department of Physics, University of Jammu, Jammu Tawi 180 006, India, and ${ }^{\text {b }}$ Department of Chemistry, Sivaji University Kolhapur, Kolhapur 416 004, Maharastra, India

Correspondence e-mail:
rkantverma@rediffmail.com

## Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
$R$ factor $=0.043$
$w R$ factor $=0.134$
Data-to-parameter ratio $=13.5$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

## 2,6-Dimethylquinolin-4(1H)-one

The structure of 2,6-dimethylquinolin- $4(1 H)$-one, $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{NO}$, has been determined as part of our study on the synthesis and crystallography of quinoline and quinazoline derivatives. It crystallizes in the monoclinic space group $P 2_{1} / c$. The molecule is planar, with the dihedral angle between the planes of the two rings being $2(1)^{\circ}$.

## Comment

Compounds containing a quinoline moiety are of considerable interest due to their biological properties (Zacharias \& Glusker, 1988; Hua \& Chen, 1997; Newell et al., 1998); these include high antibacterial, antiarrhythmic and antihypertensive activities (Yates, 1984; Jones, 1977). The crystal structures of related compounds have been reported previously (Rajnikant et al., 2000, 2001; Rajnikant, Gupta, Suri \& Lal, 2002; Rajnikant, Gupta, Deshmukh \& Varghese, 2002).

(I)

Bond distances and angles in the quinoline ring system of the title compound, (I), are normal (Sudha, Subramanian, Sivaraman, Ramakrishnan et al., 1995; Sudha, Subramanian, Sivaraman, Sriraghavan \& Steiner, 1995; Sudha et al., 1997; Rajnikant, Gupta, Deshmukh \& Varghese, 2002). The doublebond character of $\mathrm{C} 4=\mathrm{O} 1$ is confirmed by its length [1.262 (2) $\AA$ ]. The angle between the planes of the two rings is $2(1)^{\circ}$, confirming that the molecule is planar. There is a strong intermolecular hydrogen bond $\mathrm{N} 1-\mathrm{H} 1 \cdots \mathrm{O} 1^{\mathrm{i}}$, with $\mathrm{H} \cdots A=$ $1.89 \AA, D-\mathrm{H} \cdots A=174^{\circ}$ and $\mathrm{D} \cdots A=2.743$ (1) $\AA$ [symmetry code: (i) $\left.x, \frac{1}{2}-y, z+\frac{1}{2}\right]$.


Figure 1
An view of the title molecule, with displacement ellipsoids drawn at the 50\% probability level.

## Received 11 September 2003

Accepted 14 October 2003
Online 23 October 2003

## Experimental

A mixture of $p$-toluidine ( 0.01 mol ) and ethyl acetoacetate ( 0.01 mol ) in ethanol ( 20 ml ) was stirred for $2-3 \mathrm{~h}$ and allowed to stand for 36 h . The mixture was then concentrated, giving a viscous oily liquid which was vacuum distilled to afford 2-( $p$-methylbenzylidene)ethyl butyrate in $60 \%$ yield. This latter compound $(0.1 \mathrm{~mol})$ and $\mathrm{H}_{2} \mathrm{SO}_{4}(75 \mathrm{ml})$ were heated on an oil bath at 323 K for 0.5 h , at 373 K for a further 3 h , cooled and poured on to crushed ice, giving the title compound (yield $50 \%$ ), which was then recrystallized from ethanol.

## Crystal data

$\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{NO}$
$M_{r}=173.21$
Monoclinic, $P 2_{1} / c$
$a=9.068$ (7) $\AA$
$b=8.352$ (3) $\AA$
$c=12.253$ (5) $\AA$
$\beta=94.15$ (4) ${ }^{\circ}$
$V=925.6(9) \AA^{3}$
$Z=4$
$D_{x}=1.243 \mathrm{Mg} \mathrm{m}^{-3}$
Mo K $\alpha$ radiation
Cell parameters from 25
$\quad$ reflections
$\theta=6.2-11.5^{\circ}$
$\mu=0.08 \mathrm{~mm}^{-1}$
$T=293(2) \mathrm{K}$
Plate, yellow
$0.4 \times 0.3 \times 0.1 \mathrm{~mm}$

## Data collection

Enraf-Nonius CAD-4 diffractometer
$\omega / 2 \theta$ scans
Absorption correction: none
1737 measured reflections 1629 independent reflections 1306 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.009$

## Refinement

Refinement on $F^{2}$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.043$
$w R\left(F^{2}\right)=0.135$
$S=1.09$
1629 reflections
121 parameters
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0684 P)^{2}\right.$ $+0.2584 P]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\text {max }}=0.24 \mathrm{e}^{\circ} \AA^{-3}$
$\Delta \rho_{\min }=-0.15 \mathrm{e}^{-3}$
Extinction correction: SHELXL97
Extinction coefficient: 0.020 (5)

Table 1
Selected geometric parameters ( $\left(\AA^{\circ}{ }^{\circ}\right.$ ).

| $\mathrm{O} 1-\mathrm{C} 4$ | $1.2618(19)$ | $\mathrm{C} 5-\mathrm{C} 6$ | $1.371(2)$ |
| :--- | :--- | :--- | :--- |
| $\mathrm{N} 1-\mathrm{C} 2$ | $1.351(2)$ | $\mathrm{C} 5-\mathrm{C} 10$ | $1.406(2)$ |
| $\mathrm{N} 1-\mathrm{C} 9$ | $1.379(2)$ | $\mathrm{C} 6-\mathrm{C} 7$ | $1.405(3)$ |
| $\mathrm{C} 2-\mathrm{C} 3$ | $1.366(2)$ | $\mathrm{C} 6-\mathrm{C} 11$ | $1.505(3)$ |
| $\mathrm{C} 2-\mathrm{C} 12$ | $1.502(3)$ | $\mathrm{C} 7-\mathrm{C} 8$ | $1.366(3)$ |
| $\mathrm{C} 3-\mathrm{C} 4$ | $1.418(2)$ | $\mathrm{C} 8-\mathrm{C} 9$ | $1.406(2)$ |
| $\mathrm{C} 4-\mathrm{C} 10$ | $1.461(2)$ | $\mathrm{C} 9-\mathrm{C} 10$ | $1.400(2)$ |
|  |  |  |  |
| C2-N1-C9 | $121.81(14)$ | $\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 11$ | $121.09(17)$ |
| $\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 3$ | $120.48(15)$ | $\mathrm{C} 7-\mathrm{C} 6-\mathrm{C} 11$ | $121.36(17)$ |
| $\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 12$ | $116.38(16)$ | $\mathrm{C} 8-\mathrm{C} 7-\mathrm{C} 6$ | $122.37(16)$ |
| C3-C2-C12 | $123.13(17)$ | $\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9$ | $119.38(16)$ |
| C2-C3-C4 | $122.37(16)$ | $\mathrm{N} 1-\mathrm{C} 9-\mathrm{C} 10$ | $119.86(14)$ |
| $\mathrm{O} 1-\mathrm{C} 4-\mathrm{C} 3$ | $122.82(15)$ | $\mathrm{N} 1-\mathrm{C} 9-\mathrm{C} 8$ | $120.34(15)$ |
| $\mathrm{O} 1-\mathrm{C} 4-\mathrm{C} 10$ | $121.44(15)$ | $\mathrm{C} 10-\mathrm{C} 9-\mathrm{C} 8$ | $119.80(15)$ |
| $\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 10$ | $115.74(15)$ | $\mathrm{C} 9-\mathrm{C} 10-\mathrm{C} 5$ | $118.58(15)$ |
| $\mathrm{C} 6-\mathrm{C} 5-\mathrm{C} 10$ | $122.28(16)$ | $\mathrm{C} 9-\mathrm{C} 10-\mathrm{C} 4$ | $119.69(15)$ |
| $\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7$ | $117.55(16)$ | $\mathrm{C} 5-\mathrm{C} 10-\mathrm{C} 4$ | $121.73(15)$ |

All H atoms were included in the final cycles of refinement; they were constrained to ride on their parent atoms, with $U_{\text {iso }}(\mathrm{H})=$ $x U_{\text {eq }}$ (parent), where $x=1.5$ for methyl and 1.2 for all others. The constrained distances were $\mathrm{N}-\mathrm{H}=0.86 \AA, \mathrm{C}-\mathrm{H}=0.96 \AA$ for methyl H and $0.93 \AA$ for all other $\mathrm{C}-\mathrm{H} \mathrm{H}$ atoms.


Figure 2
A packing diagram, viewed down the $b$ axis.

Data collection: CAD-4 Software (Enraf-Nonius, 1989); cell refinement: CAD-4 Software; data reduction: CAD-4 Software; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: PARST95 (Nardelli, 1995).

Rajnikant is grateful to the University Grants Commission, Government of India, for funding under DRS Project No. F.530/3/DRS/2001 (SAP-I).

## References

Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Hua, D. H., Chen, Y. \& Sin, H. S. (1997). J. Org. Chem. 62, 6888-6896.
Jones, G. (1977). Chemistry of Heterocyclic Compounds: I. Quinolines, edited by G. Jones, p. 93. Chichester: Wiley.
Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
Newell, S. W., Perchellet, E. M. \& Ladesich, J. B. (1998). Int. J. Oncol. 12, $433-$ 437.

Rajnikant, Gupta, V. K., Deshmukh, M. B., Varghese, B. \& Dinesh (2001). Cryst. Res. Technol. 36, 1451-1456.
Rajnikant, Gupta, V. K., Deshmukh, M. B., Varghese, B. \& Dinesh (2002). Crystallogr. Rep. 47, 494-496.
Rajnikant, Gupta, V. K. \& Singh, A. (2000). Crystallogr. Rep. 45, 611-614.
Rajnikant, Gupta, V. K., Suri, O. P. \& Lal, M. (2002). Indian J. Pure Appl. Phys. 40, 59-61.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Sudha, L., Subramanian, K., Sivaraman, J., Ramakrishnan, V. T. R., Steiner, Th. \& Koellner, G. (1995). Acta Cryst. C51, 1026-1028.
Sudha, L., Subramanian, K., Sivaraman, J., Sriraghavan, K. \& Steiner, Th. (1995). Acta Cryst. C51, 1689-1691.

Sudha, L., Subramanian, K., Steiner, Th., Koellner, G., Ramakrishnan, V. T. R. \& Sriraghavan, K. (1997). Acta Cryst. C53, 606-607.
Yates, F. S. (1984). Comprehensive Heterocyclic Chemistry, edited by A. R. Katrizky and C. W. Rees, p. 511. New York: Pergamon.
Zacharias, D. \& Glusker, J. P. (1988). Acta Cryst. C44, 1656-1658.

