organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Rajnikant,^a* Dinesh,^a M. B. Deshmukh^b and Kamni^a

^aCondensed Matter Physics Group, Department of Physics, University of Jammu, Jammu Tawi 180 006, India, and ^bDepartment of Chemistry, Sivaji University Kolhapur, Kolhapur 416 004, Maharastra, India

Correspondence e-mail: rkantverma@rediffmail.com

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (C–C) = 0.003 Å R factor = 0.043 wR factor = 0.134 Data-to-parameter ratio = 13.5

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

2,6-Dimethylquinolin-4(1H)-one

The structure of 2,6-dimethylquinolin-4(1*H*)-one, $C_{11}H_{11}NO$, has been determined as part of our study on the synthesis and crystallography of quinoline and quinazoline derivatives. It crystallizes in the monoclinic space group $P_{2_1/c}$. The molecule is planar, with the dihedral angle between the planes of the two rings being 2 (1)°.

Comment

Compounds containing a quinoline moiety are of considerable interest due to their biological properties (Zacharias & Glusker, 1988; Hua & Chen, 1997; Newell *et al.*, 1998); these include high antibacterial, antiarrhythmic and antihypertensive activities (Yates, 1984; Jones, 1977). The crystal structures of related compounds have been reported previously (Rajnikant *et al.*, 2000, 2001; Rajnikant, Gupta, Suri & Lal, 2002; Rajnikant, Gupta, Deshmukh & Varghese, 2002).

Bond distances and angles in the quinoline ring system of the title compound, (I), are normal (Sudha, Subramanian, Sivaraman, Ramakrishnan *et al.*, 1995; Sudha, Subramanian, Sivaraman, Sriraghavan & Steiner, 1995; Sudha *et al.*, 1997; Rajnikant, Gupta, Deshmukh & Varghese, 2002). The doublebond character of C4=O1 is confirmed by its length [1.262 (2) Å]. The angle between the planes of the two rings is 2 (1)°, confirming that the molecule is planar. There is a strong intermolecular hydrogen bond N1-H1···O1ⁱ, with H···A = 1.89 Å, D-H···A = 174° and D···A = 2.743 (1) Å [symmetry code: (i) $x, \frac{1}{2} - y, z + \frac{1}{2}$].

Figure 1

© 2003 International Union of Crystallography Printed in Great Britain – all rights reserved 50% probability level. Received 11 September 2003 Accepted 14 October 2003 Online 23 October 2003

Experimental

A mixture of *p*-toluidine (0.01 mol) and ethyl acetoacetate (0.01 mol) in ethanol (20 ml) was stirred for 2–3 h and allowed to stand for 36 h. The mixture was then concentrated, giving a viscous oily liquid which was vacuum distilled to afford 2-(*p*-methylbenzylidene)ethyl butyrate in 60% yield. This latter compound (0.1 mol) and H_2SO_4 (75 ml) were heated on an oil bath at 323 K for 0.5 h, at 373 K for a further 3 h, cooled and poured on to crushed ice, giving the title compound (yield 50%), which was then recrystallized from ethanol.

 $D_x = 1.243 \text{ Mg m}^{-3}$

Cell parameters from 25

Mo Ka radiation

reflections

 $\theta = 6.2 - 11.5^{\circ}$ $\mu = 0.08 \text{ mm}^{-1}$

T = 293 (2) K

 $0.4 \times 0.3 \times 0.1 \text{ mm}$

2 standard reflections

frequency: 60 min

intensity decay: <2%

Plate, yellow

 $\theta_{\rm max} = 25.0^{\circ}$ $h = 0 \rightarrow 10$

 $\begin{array}{l} k=0\rightarrow9\\ l=-14\rightarrow14 \end{array}$

Crystal data

```
\begin{array}{l} C_{11}H_{11}\text{NO} \\ M_r = 173.21 \\ \text{Monoclinic, } P2_1/c \\ a = 9.068 \ (7) \ \text{\AA} \\ b = 8.352 \ (3) \ \text{\AA} \\ c = 12.253 \ (5) \ \text{\AA} \\ \beta = 94.15 \ (4)^\circ \\ V = 925.6 \ (9) \ \text{\AA}^3 \\ Z = 4 \end{array}
```

Data collection

Enraf–Nonius CAD-4 diffractometer $\omega/2\theta$ scans Absorption correction: none 1737 measured reflections 1629 independent reflections 1306 reflections with $I > 2\sigma(I)$ $R_{int} = 0.009$

Refinement

Refinement on F^2 $w = 1/[\sigma^2(F_o^2) + (0.0684P)^2$ $R[F^2 > 2\sigma(F^2)] = 0.043$ + 0.2584P] $wR(F^2) = 0.135$ where $P = (F_o^2 + 2F_c^2)/3$ S = 1.09 $(\Delta/\sigma)_{max} < 0.001$ 1629 reflections $\Delta\rho_{max} = 0.24$ e Å⁻³121 parameters $\Delta\rho_{min} = -0.15$ e Å⁻³H-atom parameters constrainedExtinction correction: SHELXL97Extinction coefficient: 0.020 (5)

Table 1

Selected geometric parameters (Å, °).

O1-C4	1.2618 (19)	C5-C6	1.371 (2)
N1-C2	1.351 (2)	C5-C10	1.406 (2)
N1-C9	1.379 (2)	C6-C7	1.405 (3)
C2-C3	1.366 (2)	C6-C11	1.505 (3)
C2-C12	1.502 (3)	C7-C8	1.366 (3)
C3-C4	1.418 (2)	C8-C9	1.406 (2)
C4-C10	1.461 (2)	C9-C10	1.400 (2)
C2-N1-C9	121.81 (14)	C5-C6-C11	121.09 (17)
N1-C2-C3	120.48 (15)	C7-C6-C11	121.36 (17)
N1-C2-C12	116.38 (16)	C8-C7-C6	122.37 (16)
C3-C2-C12	123.13 (17)	C7-C8-C9	119.38 (16)
C2-C3-C4	122.37 (16)	N1-C9-C10	119.86 (14)
O1-C4-C3	122.82 (15)	N1-C9-C8	120.34 (15)
O1-C4-C10	121.44 (15)	C10-C9-C8	119.80 (15)
C3-C4-C10	115.74 (15)	C9-C10-C5	118.58 (15)
C6-C5-C10	122.28 (16)	C9-C10-C4	119.69 (15)
C5-C6-C7	117.55 (16)	C5-C10-C4	121.73 (15)

All H atoms were included in the final cycles of refinement; they were constrained to ride on their parent atoms, with $U_{iso}(H) = xU_{eq}(\text{parent})$, where x = 1.5 for methyl and 1.2 for all others. The constrained distances were N-H = 0.86 Å, C-H = 0.96 Å for methyl H and 0.93 Å for all other C-H H atoms.

Figure 2					
A packing	diagram,	viewed	down	the b	axis.

Data collection: *CAD-4 Software* (Enraf–Nonius, 1989); cell refinement: *CAD-4 Software*; data reduction: *CAD-4 Software*; program(s) used to solve structure: *SHELXS*97 (Sheldrick, 1997); program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997); software used to prepare material for publication: *PARST*95 (Nardelli, 1995).

Rajnikant is grateful to the University Grants Commission, Government of India, for funding under DRS Project No. F.530/3/DRS/2001 (SAP–I).

References

- Enraf–Nonius (1989). *CAD*-4 *Software*. Version 5.0. Enraf–Nonius, Delft, The Netherlands.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Hua, D. H., Chen, Y. & Sin, H. S. (1997). J. Org. Chem. 62, 6888-6896.
- Jones, G. (1977). Chemistry of Heterocyclic Compounds: I. Quinolines, edited by G. Jones, p. 93. Chichester: Wiley.
- Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
- Newell, S. W., Perchellet, E. M. & Ladesich, J. B. (1998). Int. J. Oncol. 12, 433–437.
- Rajnikant, Gupta, V. K., Deshmukh, M. B., Varghese, B. & Dinesh (2001). Cryst. Res. Technol. 36, 1451–1456.
- Rajnikant, Gupta, V. K., Deshmukh, M. B., Varghese, B. & Dinesh (2002). Crystallogr. Rep. 47, 494–496.
- Rajnikant, Gupta, V. K. & Singh, A. (2000). Crystallogr. Rep. 45, 611-614.
- Rajnikant, Gupta, V. K., Suri, O. P. & Lal, M. (2002). Indian J. Pure Appl. Phys. 40, 59–61.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Sudha, L., Subramanian, K., Sivaraman, J., Ramakrishnan, V. T. R., Steiner, Th. & Koellner, G. (1995). Acta Cryst. C51, 1026–1028.
- Sudha, L., Subramanian, K., Sivaraman, J., Sriraghavan, K. & Steiner, Th. (1995). Acta Cryst. C51, 1689–1691.
- Sudha, L., Subramanian, K., Steiner, Th., Koellner, G., Ramakrishnan, V. T. R. & Sriraghavan, K. (1997). Acta Cryst. C53, 606–607.

Yates, F. S. (1984). Comprehensive Heterocyclic Chemistry, edited by A. R. Katrizky and C. W. Rees, p. 511. New York: Pergamon.

Zacharias, D. & Glusker, J. P. (1988). Acta Cryst. C44, 1656-1658.